Parameter estimates for fractional autoregressive spatial processes
نویسندگان
چکیده
منابع مشابه
Parameter Estimates for Fractional Autoregressive Spatial Processes
A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.
متن کاملm at h . ST ] 2 4 Ja n 20 05 Parameter Estimates for Fractional Autoregressive Spatial Processes
A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated in sections 2-4. In particular, it is shown thatˆd N − d = O P (Log N) 3 N , where d = (d 1 , d 2) denotes the long memory parameter.
متن کاملParameter estimation for non-Gaussian autoregressive processes
It is proposed to jointly estimate the parameters of nonGaussian autoregressive (AR) processes in a Bayesian context using the Gibbs sampler. Using the Markov chains produced by the sampler an approximation to the vector MAP estimator is implemented. The results reported here used AR(4) models driven by noise sequences where each sample is iid as a two component Gaussian sum mixture. The result...
متن کاملParameter Estimation for Fractional Poisson Processes
The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting nonexponential, heavy-tailed distributions of interarrival times and differe...
متن کاملParameter estimation for fractional Ornstein-Uhlenbeck processes
We study a least squares estimator b θT for the Ornstein-Uhlenbeck process, dXt = θXtdt+σdB H t , driven by fractional Brownian motion B H with Hurst parameter H ≥ 1 2 . We prove the strong consistence of b θT (the almost surely convergence of b θT to the true parameter θ). We also obtain the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit theorem for multiple Wiener integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2005
ISSN: 0090-5364
DOI: 10.1214/009053605000000589