Parameter estimates for fractional autoregressive spatial processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimates for Fractional Autoregressive Spatial Processes

A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.

متن کامل

m at h . ST ] 2 4 Ja n 20 05 Parameter Estimates for Fractional Autoregressive Spatial Processes

A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated in sections 2-4. In particular, it is shown thatˆd N − d = O P (Log N) 3 N , where d = (d 1 , d 2) denotes the long memory parameter.

متن کامل

Parameter estimation for non-Gaussian autoregressive processes

It is proposed to jointly estimate the parameters of nonGaussian autoregressive (AR) processes in a Bayesian context using the Gibbs sampler. Using the Markov chains produced by the sampler an approximation to the vector MAP estimator is implemented. The results reported here used AR(4) models driven by noise sequences where each sample is iid as a two component Gaussian sum mixture. The result...

متن کامل

Parameter Estimation for Fractional Poisson Processes

The paper proposes a formal estimation procedure for parameters of the fractional Poisson process (fPp). Such procedures are needed to make the fPp model usable in applied situations. The basic idea of fPp, motivated by experimental data with long memory is to make the standard Poisson model more flexible by permitting nonexponential, heavy-tailed distributions of interarrival times and differe...

متن کامل

Parameter estimation for fractional Ornstein-Uhlenbeck processes

We study a least squares estimator b θT for the Ornstein-Uhlenbeck process, dXt = θXtdt+σdB H t , driven by fractional Brownian motion B H with Hurst parameter H ≥ 1 2 . We prove the strong consistence of b θT (the almost surely convergence of b θT to the true parameter θ). We also obtain the rate of this convergence when 1/2 ≤ H < 3/4, applying a central limit theorem for multiple Wiener integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2005

ISSN: 0090-5364

DOI: 10.1214/009053605000000589